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Preface

The continuing popularity of Microwave Engineering is gratifying. I have received many
letters and emails from students and teachers from around the world with positive com-
ments and suggestions. I think one reason for its success is the emphasis on the funda-
mentals of electromagnetics, wave propagation, network analysis, and design principles
as applied to modern RF and microwave engineering. As I have stated in earlier editions,
I have tried to avoid the handbook approach in which a large amount of information is
presented with little or no explanation or context, but a considerable amount of material
in this book is related to the design of specific microwave circuits and components, for
both practical and motivational value. I have tried to base the analysis and logic behind
these designs on first principles, so the reader can see and understand the process of ap-
plying fundamental concepts to arrive at useful results. The engineer who has a firm grasp
of the basic concepts and principles of microwave engineering and knows how these can
be applied toward practical problems is the engineer who is the most likely to be rewarded
with a creative and productive career.

For this new edition I again solicited detailed feedback from teachers and readers for
their thoughts about how the book should be revised. The most common requests were
for more material on active circuits, noise, nonlinear effects, and wireless systems. This
edition, therefore, now has separate chapters on noise and nonlinear distortion, and ac-
tive devices. In Chapter 10, the coverage of noise has been expanded, along with more
material on intermodulation distortion and related nonlinear effects. For Chapter 11, on
active devices, I have added updated material on bipolar junction and field effect transis-
tors, including data for a number of commercial devices (Schottky and PIN diodes, and Si,
GaAs, GaN, and SiGe transistors), and these sections have been reorganized and rewritten.
Chapters 12 and 13 treat active circuit design, and discussions of differential amplifiers,
inductive degeneration for nMOS amplifiers, and differential FET and Gilbert cell mix-
ers have been added. In Chapter 14, on RF and microwave systems, I have updated and
added new material on wireless communications systems, including link budget, link mar-
gin, digital modulation methods, and bit error rates. The section on radiation hazards has
been updated and rewritten. Other new material includes a section on transients on trans-
mission lines (material that was originally in the first edition, cut from later editions, and
now brought back by popular demand), the theory of power waves, a discussion of higher
order modes and frequency effects for microstrip line, and a discussion of how to deter-
mine unloaded Q from resonator measurements. This edition also has numerous new or
revised problems and examples, including several questions of the “open-ended” variety.
Material that has been cut from this edition includes the quasi-static numerical analysis of
microstrip line and some material related to microwave tubes. Finally, working from the
original source files, I have made hundreds of corrections and rewrites of the original text.

v
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vi Preface

Today, microwave and RF technology is more pervasive than ever. This is especially
true in the commercial sector, where modern applications include cellular telephones,
smartphones, 3G and WiFi wireless networking, millimeter wave collision sensors for ve-
hicles, direct broadcast satellites for radio, television, and networking, global positioning
systems, radio frequency identification tagging, ultra wideband radio and radar systems,
and microwave remote sensing systems for the environment. Defense systems continue to
rely heavily on microwave technology for passive and active sensing, communications, and
weapons control systems. There should be no shortage of challenging problems in RF and
microwave engineering in the foreseeable future, and there will be a clear need for engi-
neers having both an understanding of the fundamentals of microwave engineering and the
creativity to apply this knowledge to problems of practical interest.

Modern RF and microwave engineering predominantly involves distributed circuit
analysis and design, in contrast to the waveguide and field theory orientation of earlier
generations. The majority of microwave engineers today design planar components and in-
tegrated circuits without direct recourse to electromagnetic analysis. Microwave computer-
aided design (CAD) software and network analyzers are the essential tools of today’s
microwave engineer, and microwave engineering education must respond to this shift in
emphasis to network analysis, planar circuits and components, and active circuit design.
Microwave engineering will always involve electromagnetics (many of the more sophisti-
cated microwave CAD packages implement rigorous field theory solutions), and students
will still benefit from an exposure to subjects such as waveguide modes and coupling
through apertures, but the change in emphasis to microwave circuit analysis and design
is clear.

This text is written for a two-semester course in RF and microwave engineering for
seniors or first-year graduate students. It is possible to use Microwave Engineering with or
without an electromagnetics emphasis. Many instructors today prefer to focus on circuit
analysis and design, and there is more than enough material in Chapters 2, 4–8, and 10–14
for such a program with minimal or no field theory requirement. Some instructors may wish
to begin their course with Chapter 14 on systems in order to provide some motivational
context for the study of microwave circuit theory and components. This can be done, but
some basic material on noise from Chapter 10 may be required.

Two important items that should be included in a successful course on microwave
engineering are the use of CAD simulation software and a microwave laboratory experi-
ence. Providing students with access to CAD software allows them to verify results of the
design-oriented problems in the text, giving immediate feedback that builds confidence and
makes the effort more rewarding. Because the drudgery of repetitive calculation is elimi-
nated, students can easily try alternative approaches and explore problems in more detail.
The effect of line losses, for example, is explored in several examples and problems; this
would be effectively impossible without the use of modern CAD tools. In addition, class-
room exposure to CAD tools provides useful experience upon graduation. Most of the
commercially available microwave CAD tools are very expensive, but several manufactur-
ers provide academic discounts or free “student versions” of their products. Feedback from
reviewers was almost unanimous, however, that the text should not emphasize a particular
software product in the text or in supplementary materials.

A hands-on microwave instructional laboratory is expensive to equip but provides the
best way for students to develop an intuition and physical feeling for microwave phenom-
ena. A laboratory with the first semester of the course might cover the measurement of
microwave power, frequency, standing wave ratio, impedance, and scattering parameters,
as well as the characterization of basic microwave components such as tuners, couplers,
resonators, loads, circulators, and filters. Important practical knowledge about connectors,
waveguides, and microwave test equipment will be acquired in this way. A more advanced
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laboratory session can consider topics such as noise figure, intermodulation distortion, and
mixing. Naturally, the type of experiments that can be offered is heavily dependent on the
test equipment that is available.

Additional resources for students and instructors are available on the Wiley website.
These include PowerPoint slides, a suggested laboratory manual, and an online solution
manual for all problems in the text (available to qualified instructors, who may apply for
access at the website http://he-cda.wiley.com/wileycda/).
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C h a p t e r O n e

Electromagnetic Theory

We begin our study of microwave engineering with a brief overview of the history and
major applications of microwave technology, followed by a review of some of the fundamental
topics in electromagnetic theory that we will need throughout the book. Further discussion of
these topics may be found in references [1–8].

1.1 INTRODUCTION TO MICROWAVE ENGINEERING

The field of radio frequency (RF) and microwave engineering generally covers the behavior
of alternating current signals with frequencies in the range of 100 MHz (1 MHz = 106 Hz)
to 1000 GHz (1 GHz = 109 Hz). RF frequencies range from very high frequency (VHF)
(30–300 MHz) to ultra high frequency (UHF) (300–3000 MHz), while the term microwave
is typically used for frequencies between 3 and 300 GHz, with a corresponding electrical
wavelength between λ = c/ f = 10 cm and λ = 1 mm, respectively. Signals with wave-
lengths on the order of millimeters are often referred to as millimeter waves. Figure 1.1
shows the location of the RF and microwave frequency bands in the electromagnetic spec-
trum. Because of the high frequencies (and short wavelengths), standard circuit theory
often cannot be used directly to solve microwave network problems. In a sense, standard
circuit theory is an approximation, or special case, of the broader theory of electromag-
netics as described by Maxwell’s equations. This is due to the fact that, in general, the
lumped circuit element approximations of circuit theory may not be valid at high RF and
microwave frequencies. Microwave components often act as distributed elements, where
the phase of the voltage or current changes significantly over the physical extent of the de-
vice because the device dimensions are on the order of the electrical wavelength. At much
lower frequencies the wavelength is large enough that there is insignificant phase variation
across the dimensions of a component. The other extreme of frequency can be identified
as optical engineering, in which the wavelength is much shorter than the dimensions of the
component. In this case Maxwell’s equations can be simplified to the geometrical optics
regime, and optical systems can be designed with the theory of geometrical optics. Such

1
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2 Chapter 1: Electromagnetic Theory
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L band
S band
C band
X band
Ku band
K band
Ka band
U band
V band
E band
W band
F band

300 kHz–3 MHz
3 MHz–30 MHz
30 MHz–300 MHz
300 MHz–3 GHz
1–2 GHz
2–4 GHz
4–8 GHz
8–12 GHz
12–18 GHz
18–26 GHz
26–40 GHz
40–60 GHz
50–75 GHz
60–90 GHz
75–110 GHz
90–140 GHz

FIGURE 1.1 The electromagnetic spectrum.

techniques are sometimes applicable to millimeter wave systems, where they are referred
to as quasi-optical.

In RF and microwave engineering, then, one must often work with Maxwell’s equa-
tions and their solutions. It is in the nature of these equations that mathematical complexity
arises since Maxwell’s equations involve vector differential or integral operations on vec-
tor field quantities, and these fields are functions of spatial coordinates. One of the goals
of this book is to try to reduce the complexity of a field theory solution to a result that
can be expressed in terms of simpler circuit theory, perhaps extended to include distributed
elements (such as transmission lines) and concepts (such as reflection coefficients and scat-
tering parameters). A field theory solution generally provides a complete description of the
electromagnetic field at every point in space, which is usually much more information than
we need for most practical purposes. We are typically more interested in terminal quanti-
ties such as power, impedance, voltage, and current, which can often be expressed in terms
of these extended circuit theory concepts. It is this complexity that adds to the challenge,
as well as the rewards, of microwave engineering.

Applications of Microwave Engineering

Just as the high frequencies and short wavelengths of microwave energy make for diffi-
culties in the analysis and design of microwave devices and systems, these same aspects
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provide unique opportunities for the application of microwave systems. The following con-
siderations can be useful in practice:

� Antenna gain is proportional to the electrical size of the antenna. At higher frequen-
cies, more antenna gain can be obtained for a given physical antenna size, and this
has important consequences when implementing microwave systems.

� More bandwidth (directly related to data rate) can be realized at higher frequencies.
A 1% bandwidth at 600 MHz is 6 MHz, which (with binary phase shift keying
modulation) can provide a data rate of about 6 Mbps (megabits per second), while
at 60 GHz a 1% bandwidth is 600 MHz, allowing a 600 Mbps data rate.

� Microwave signals travel by line of sight and are not bent by the ionosphere as are
lower frequency signals. Satellite and terrestrial communication links with very high
capacities are therefore possible, with frequency reuse at minimally distant locations.

� The effective reflection area (radar cross section) of a radar target is usually propor-
tional to the target’s electrical size. This fact, coupled with the frequency character-
istics of antenna gain, generally makes microwave frequencies preferred for radar
systems.

� Various molecular, atomic, and nuclear resonances occur at microwave frequencies,
creating a variety of unique applications in the areas of basic science, remote sens-
ing, medical diagnostics and treatment, and heating methods.

The majority of today’s applications of RF and microwave technology are to wire-
less networking and communications systems, wireless security systems, radar systems,
environmental remote sensing, and medical systems. As the frequency allocations listed
in Figure 1.1 show, RF and microwave communications systems are pervasive, especially
today when wireless connectivity promises to provide voice and data access to “anyone,
anywhere, at any time.”

Modern wireless telephony is based on the concept of cellular frequency reuse, a tech-
nique first proposed by Bell Labs in 1947 but not practically implemented until the 1970s.
By this time advances in miniaturization, as well as increasing demand for wireless com-
munications, drove the introduction of several early cellular telephone systems in Europe,
the United States, and Japan. The Nordic Mobile Telephone (NMT) system was deployed
in 1981 in the Nordic countries, the Advanced Mobile Phone System (AMPS) was intro-
duced in the United States in 1983 by AT&T, and NTT in Japan introduced its first mobile
phone service in 1988. All of these early systems used analog FM modulation, with their
allocated frequency bands divided into several hundred narrow band voice channels. These
early systems are usually referred to now as first-generation cellular systems, or 1G.

Second-generation (2G) cellular systems achieved improved performance by using
various digital modulation schemes, with systems such as GSM, CDMA, DAMPS, PCS,
and PHS being some of the major standards introduced in the 1990s in the United States,
Europe, and Japan. These systems can handle digitized voice, as well as some limited data,
with data rates typically in the 8 to 14 kbps range. In recent years there has been a wide
variety of new and modified standards to transition to handheld services that include voice,
texting, data networking, positioning, and Internet access. These standards are variously
known as 2.5G, 3G, 3.5G, 3.75G, and 4G, with current plans to provide data rates up to at
least 100 Mbps. The number of subscribers to wireless services seems to be keeping pace
with the growing power and access provided by modern handheld wireless devices; as of
2010 there were more than five billion cell phone users worldwide.

Satellite systems also depend on RF and microwave technology, and satellites have been
developed to provide cellular (voice), video, and data connections worldwide. Two large
satellite constellations, Iridium and Globalstar, were deployed in the late 1990s to provide
worldwide telephony service. Unfortunately, these systems suffered from both technical
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drawbacks and weak business models and have led to multibillion dollar financial failures.
However, smaller satellite systems, such as the Global Positioning Satellite (GPS) system
and the Direct Broadcast Satellite (DBS) system, have been extremely successful.

Wireless local area networks (WLANs) provide high-speed networking between com-
puters over short distances, and the demand for this capability is expected to remain strong.
One of the newer examples of wireless communications technology is ultra wide band
(UWB) radio, where the broadcast signal occupies a very wide frequency band but with a
very low power level (typically below the ambient radio noise level) to avoid interference
with other systems.

Radar systems find application in military, commercial, and scientific fields. Radar is
used for detecting and locating air, ground, and seagoing targets, as well as for missile
guidance and fire control. In the commercial sector, radar technology is used for air traffic
control, motion detectors (door openers and security alarms), vehicle collision avoidance,
and distance measurement. Scientific applications of radar include weather prediction, re-
mote sensing of the atmosphere, the oceans, and the ground, as well as medical diagnostics
and therapy. Microwave radiometry, which is the passive sensing of microwave energy
emitted by an object, is used for remote sensing of the atmosphere and the earth, as well as
in medical diagnostics and imaging for security applications.

A Short History of Microwave Engineering

Microwave engineering is often considered a fairly mature discipline because the funda-
mental concepts were developed more than 50 years ago, and probably because radar, the
first major application of microwave technology, was intensively developed as far back as
World War II. However, recent years have brought substantial and continuing developments
in high-frequency solid-state devices, microwave integrated circuits, and computer-aided
design techniques, and the ever-widening applications of RF and microwave technology to
wireless communications, networking, sensing, and security have kept the field active and
vibrant.

The foundations of modern electromagnetic theory were formulated in 1873 by James
Clerk Maxwell, who hypothesized, solely from mathematical considerations, electromag-
netic wave propagation and the idea that light was a form of electromagnetic energy.
Maxwell’s formulation was cast in its modern form by Oliver Heaviside during the period
from 1885 to 1887. Heaviside was a reclusive genius whose efforts removed many of the
mathematical complexities of Maxwell’s theory, introduced vector notation, and provided
a foundation for practical applications of guided waves and transmission lines. Heinrich
Hertz, a German professor of physics and a gifted experimentalist who understood the the-
ory published by Maxwell, carried out a set of experiments during the period 1887–1891
that validated Maxwell’s theory of electromagnetic waves. Figure 1.2 is a photograph of
the original equipment used by Hertz in his experiments. It is interesting to observe that
this is an instance of a discovery occurring after a prediction has been made on theoretical
grounds—a characteristic of many of the major discoveries throughout the history of sci-
ence. All of the practical applications of electromagnetic theory—radio, television, radar,
cellular telephones, and wireless networking—owe their existence to the theoretical work
of Maxwell.

Because of the lack of reliable microwave sources and other components, the rapid
growth of radio technology in the early 1900s occurred primarily in the HF to VHF range.
It was not until the 1940s and the advent of radar development during World War II that
microwave theory and technology received substantial interest. In the United States, the
Radiation Laboratory was established at the Massachusetts Institute of Technology to de-
velop radar theory and practice. A number of talented scientists, including N. Marcuvitz,
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FIGURE 1.2 Original apparatus used by Hertz for his electromagnetics experiments. (1) 50 MHz
transmitter spark gap and loaded dipole antenna. (2) Wire grid for polarization ex-
periments. (3) Vacuum apparatus for cathode ray experiments. (4) Hot-wire gal-
vanometer. (5) Reiss or Knochenhauer spirals. (6) Rolled-paper galvanometer. (7)
Metal sphere probe. (8) Reiss spark micrometer. (9) Coaxial line. (10–12) Equip-
ment to demonstrate dielectric polarization effects. (13) Mercury induction coil
interrupter. (14) Meidinger cell. (15) Bell jar. (16) Induction coil. (17) Bunsen
cells. (18) Large-area conductor for charge storage. (19) Circular loop receiving
antenna. (20) Eight-sided receiver detector. (21) Rotating mirror and mercury inter-
rupter. (22) Square loop receiving antenna. (23) Equipment for refraction and dielec-
tric constant measurement. (24) Two square loop receiving antennas. (25) Square
loop receiving antenna. (26) Transmitter dipole. (27) Induction coil. (28) Coaxial
line. (29) High-voltage discharger. (30) Cylindrical parabolic reflector/receiver. (31)
Cylindrical parabolic reflector/transmitter. (32) Circular loop receiving antenna.
(33) Planar reflector. (34, 35) Battery of accumulators. Photographed on October
1, 1913, at the Bavarian Academy of Science, Munich, Germany, with Hertz’s as-
sistant, Julius Amman.

Photograph and identification courtesy of J. H. Bryant.

I. I. Rabi, J. S. Schwinger, H. A. Bethe, E. M. Purcell, C. G. Montgomery, and R. H. Dicke,
among others, gathered for a very intensive period of development in the microwave field.
Their work included the theoretical and experimental treatment of waveguide components,
microwave antennas, small-aperture coupling theory, and the beginnings of microwave net-
work theory. Many of these researchers were physicists who returned to physics research
after the war, but their microwave work is summarized in the classic 28-volume Radiation
Laboratory Series of books that still finds application today.

Communications systems using microwave technology began to be developed soon
after the birth of radar, benefiting from much of the work that was originally done for
radar systems. The advantages offered by microwave systems, including wide bandwidths
and line-of-sight propagation, have proved to be critical for both terrestrial and satellite




